भारत पेट्रोलियम कॉर्पोरेशन लिमिटेड

भारत सरकार का उपक्रम कोच्चि रिफ़ाइनरी

BHARAT PETROLEUM CORPORATION LIMITED A Govt. of India Enterprise

A Govt. of India Enterprise Kochi Refinery

KR.HSE.ENV.05.HSSE.HECCR/02/2022/EC No: J-11011/369/2005-IA II (I) 15.12.2022

To

The Additional Principal Chief conservator of Forests (C)
Ministry of Environment, Forest & Climate Change
4th Floor, E&F Wings, Kendriya sadan, Koramangala, Bangalore-560 034

Dear Sir,

Sub: Submission of Half yearly Compliance report – Environmental Clearance issued by the Ministry of Environment, Forests and Climate Change.

Ref: EC No: J-11011/369/2005-IA II (I) dated 2nd February 2006, granting environmental clearance for Capacity Expansion cum Modernisation Project (Phase-II).

Please find enclosed the compliance report on the various conditions laid down by MoEF &CC, pertaining to the half year period from 1st April 2022 to 30th September 2022 for the Project mentioned in above reference.

Thanking you

Very truly yours

For BPCL Kochi Refinery

Ramachandran, M.K

General Manager - in - Charge (HSE)

Encl: 1. Six Monthly Compliance Report

Annexure - I Emission Details
 Annexure - II Ambient Air Details

4. Annexure - III Quality of Effluent discharged

5. Annexure - IV
6. Annexure - V
Noise Surveillance Data

6. Annexure - V7. Annexure - VINoise Surveillance Data.Health Surveillance Data.

8. Annexure - VII CREP Compliance

CC:

The Member Secretary

Central Pollution Control Board

Parivesh Bhawan

East Arjun Nagar, New Delhi- 110032

2.

The Member Secretary

Kerala State Pollution Control Board

Plamoodu Junction

Pattom Palace, Thiruvananthapuram - 695 004

पोस्ट बैग नं: 2, अम्बलमुगल - 682 302, एरणाकुलम ज़िला, केरल, दूरभाषः 0484 - 2722061 - 69 फैक्सः 0484 - 2720961 / 2721094 पंजीकृत कार्यालयः भारत भवन, 4 & 6, क्रीमभाय रोड, बेलार्ड इस्टेट, पी. बी. नं. 688 मुंबई -400 001 Compliance status of Environmental clearance conditions for CAPACITY EXPANSION CUM MODERNISATION PROJECT (PHASE-II) accorded by J-11011/369/2005-IA II (I) dated 2nd February 2006

Status of the project: Project commissioned in 2010 -11

SI No	Conditions	Status as on 30.09.2022
A.	SPECIFIC CONDITIONS	
1.	The gaseous emissions from various process units shall conform to the standards prescribed by the concerned authorities from time to time. The KSPCB may specify more stringent standards for the relevant parameters keeping in view the nature of the industry and its size and location. At no time, the emissions levels should go beyond the prescribed standards. In the event of failure of any pollution control system adopted by the unit, the respective unit should not be restarted until the control measures are rectified to achieve the desired efficiency.	All emissions within the prescribed standards. No failures of any pollution control system.
2.	On-line continuous monitoring facilities shall be provided on all the stacks of adequate height as per CPCB guidelines. SO ₂ , CO, HC, NOx etc. shall be maintained within the CPCB limits. Low sulphur fuels shall be used for heaters. Sulphur Recovery Unit (SRU) shall be installed and SO ₂ emissions from the plant shall not exceed existing 1607 kg/h and further efforts shall be made to further reduce SO ₂ emissions. Low NO _x burners shall be installed to control the NO _x emissions.	Online continuous monitoring facilities are provided on all operational stacks. SO2, CO, NO _X , PM, H2S and Ni/Vanadium are being monitored as per consent and are within limits BPCL Kochi Refinery is using de-sulfurized fuel gas and low sulphur fuel oil (Sulphur content less than 1%) in old heaters and less than 0.5% in newly installed heaters boilers. Total SO ₂ emission from the refinery is within the limit. The allowable limit as per latest CTO is 1579 kg/hr.; maintaining well below this value. For reducing the sulphur content of fuel gas used in heaters, sulphur recovery unit (SRU) of capacity 80 TPD, has been installed as part of CEMP Phase-II project.
		Heaters and boilers installed as part of CEMP Phase- II project are provided with low NOx burners.

SI No	Conditions	Status as on 30.09.2022
3.	Continuous ambient air quality monitoring stations for SO ₂ , SPM, and H.C. shall be installed in all the 4 directions in consultation with the KSPCB. Data shall be regularly monitored and records maintained and report submitted to the Ministry/CPCB/KSPCB once in six months.	In consultation with KSPCB, the refinery has installed CAAQMS stations in all the four directions. Data on ambient air quality for the period from 1st April 2022 to 30th September 2022 is attached as Annexure-II.
4.	As indicated in the EIA/EMP reports, out of total 1700 m³/d industrial effluent generated, 360 m³/d sour water will be recycled in the plant after stripping of Ammonia and Hydrogen Sulphide and will be used for desalting of crude in de-salters and as wash water in air fin condensates etc. Besides, 300 KL /day, treated waste water will be used for fire fighting, process area cleaning, cooling water make up and for green belt development. Remaining treated effluent will be discharged to Chitrapuzha river after conforming to the prescribed standards. Generation of waste water shall be reduced by installation of sour water stripper unit; use of closed blow down system for all hydrocarbon liquid discharge from the process units, proper segregation and collection of various effluents; paving the process area to avoid contamination of soil, ground water, comprehensive waste water management etc.	A new Sour water Stripping unit (SWS) of capacity 412.8 m³/d was installed along with the project. The stripped water is recycled in the plant. Stripped water is used in De-salters in Crude Distillation units Closed blow down (CBD) system is provided in all units. Proper collection /segregation facilities are installed for effluent streams. The effluent treatment plant (ETP) put up as part of CEMP-Phase II project is running continuously. The treated effluent discharge discharged to Chithrappuzha conforms to the standards. Treated water is recycled through RO based DM plant, more than 300 KL/day of this treated effluent is being used for fire fighting, process area cleaning and green belt development. Process areas are paved to avoid contamination of the soil.
5.	No ground water contamination in and around factory premises shall be ensured by making all the underground lines carrying hydrocarbons, closed drainage system, storage tank etc. leak proof in order to avoid any leakages. Regular monitoring of ground water in and around factory premises shall be carried out by installing piezometer wells and six monthly reports shall be submitted to the Regional Office of this Ministry at Bangalore/CPCB/KSPCB.	Around sixty borewells are dug inside the refinery premises and the water sample from the wells are monitored regularly, to assess the ground water quality, 14 nos of Piezometer wells are also provided for the same. Hydrocarbon storage tanks are provided with MS plates at the bottom to avoid leaching of oil to land. Moreover LDPE lining is also provided on the tank pad of new tanks as an additional precaution to prevent oil seepage to underground water. In addition, closed drainage system is provided for all storage tanks, to avoid any possible land/ ground water contamination during tank draining.

SI No	Conditions	Status as on 30.09.2022
6.	The domestic waste water shall be treated in the sewage treatment plant and treated waste water conforming to the standards for land application shall be reused for green belt development.	STP of 250 m3/day capacity has been installed and running continuously for treating the domestic waste water. The treated effluent is being used for green belt development.
7.	Regular monitoring of the quality of effluent discharged and at river water intake point shall be ensured to ensure no pollution of the Chitrapuzha river.	Quality of treated effluent water discharged to the Chitrapuzha river is being analysed and monitored on regular basis to ensure the stipulated standards. The river water intake to refinery is located at Periyar river and the quality of the same is also monitored.
8.	In-plant control measures for checking fugitive emissions from spillage/raw materials handling etc. should be provided. Proper maintenance of equipment shall be ensured to reduce fugitive emissions.	Closed Blow Down (CBD) systems are provided in all process plants to enable closed loop recycling of all hydrocarbon drains, without fugitive emissions. Double seal floating roof are provided for all the Crude tanks Hydro carbon detectors are provided as per requirement. Proper maintenance of equipment (including preventive maintenance) is carried out on a regular basis. Quarterly based fugitive emission monitoring and maintenance system (LDAR) has been followed and is being attended any identified emissions / leaks.
9.	Solid waste generated in the form of oil sludge, chemical sludge, catalyst, spent molecular sieves and bio-sludge shall be properly treated / reprocessed / reused or properly disposed-off. Spent catalyst, a hazardous waste shall either be sent back to supplier(s) for reprocessing or disposed-off in the secured landfill. Oil sludge shall be subjected to maximum recovery followed by bio-remediation. Bio-sludge for ETP shall be used as manure after ensuring all the parameters within the permissible limits whereas chemical sludge from ETP shall be collected and disposed in Secured Landfill (SLF).	Post IREP, ETP chemical sludge is processed in DCU. Oily sludge to the maximum possible is processed in DCU. BPCL Kochi Refinery has implemented a scheme for recovery of oil from oily sludge, solids after oil recovery is bio remediated and disposed in TSDF. Spent catalyst is disposed by either returning to the original supplier or selling to the recycler or is disposed in secured land fill. Bio sludge from effluent treatment plant is used as manure.

SI No	Conditions	Status as on 30.09.2022
10.	Green belt of adequate width and density shall be provided to mitigate the effects of fugitive emissions all around the plant. Green belt shall be developed in 116 hectares out of total 461.7 hectares land with local species in consultation with the DFO and as per the CPCB guidelines.	A full-fledged greenbelt is developed and maintained in the refinery premises. Part of the green belt that has been disturbed for IREP construction is restored by planting 25000 saplings in the refinery premises and are under various stages of growth. More numbers are added to the list every year.
11.	Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.	Health surveillance done regularly and records maintained. Reported as Annexure-VI
12.	As committed in the EIA/EMP report, the company shall earmark Rs.78.30 crores for environment protection measures and Rs.51.00crores for community development activities.	CREP reported as Annexure-VII
13.	All the other recommendations made in the Charter on Corporate Responsibility for Environment Protection (CREP) for the Refinery sector shall be implemented. CREP guidelines regarding discharge of treated effluent within 0.4 m ³ /MT of crude shall be strictly followed.	Complied. The discharge of treated effluent was 0.17 m ³ /MT of crude for the half year period from 1 st April 2022 to 30 th September 2022.
В.	GENERAL CONDITIONS:	
1.	The project authorities must strictly adhere to the stipulations made by the KSPCB and the State Government.	Complied.
2.	No expansion or modification in the plant shall be carried out without prior approval of the Ministry of Environment & Forests.	Complied.

SI No	Conditions	Status as on 30.09.2022
3.	Adequate AAQMS should be established in the downward direction as well as where maximum ground level concentration of SPM, SO ₂ and NOx are anticipated in consultation with the KSPCB. Data on ambient air quality, fugitive emission and stack emissions shall be regularly submitted to this Ministry including its Regional Office at Bangalore once in six months and monthly to KSPCB.	In consultation with KSPCB, the refinery has installed Six continuous AAQM Stations. Online data are being continuously transferred to CPCB from all AAQMS stations. Data on ambient air quality during the half yearly period from 1st April 2022 to 30th September 2022 is attached as Annexure-II. Data on stack emissions during the half yearly period from 1st April 2022 to 30th September 2022 is attached as Annexure-I.
4.	The overall noise levels in and around the plant area should be kept well within the standards (85 dBA) by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels should conform to the standards prescribed under EPA Rules. 1989 viz 75 dBA (daytime) and 70 dBA (night time).	Complied. Noise level data attached as Annexure - V Continuous Noise monitoring station also installed in the boundary area as part of latest MSB project.
5.	The project authorities shall provide adequate funds (both recurring and non-recurring) to implement the conditions stipulated by the Ministry of Environment and Forests as well as the State Government along with the implementation schedule for all the condition stipulated herein. The funds so provided should not be diverted for any other purposes.	Complied.
6.	The Regional Office of this Ministry at Bangalore/CPCB/ KSPCB will monitor the stipulated conditions. A six monthly compliance report and the monitored data along with statistical interpretation should be submitted to them regularly.	Complied.

SI No	Conditions	Status as on 30.09.2022
7.	The company shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the KSPCB / Committee and may also be seen at Website of the MoEF &CC at http:/envfor.nic.in. This should be advertised within seven days from the date of issue of the clearance letter at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same should be forwarded to the Regional Office.	Complied.
8.	The project authorities shall inform the Regional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of commencing the land development work.	The final approval for the implementation of the project was obtained on 27.04.06. The same was informed MoEF & CC vide letter No. 10/MPT/CEMP-II/04 dated 18 th May, 2006. The project has been commissioned.

Emission rate min max 22247 90836 19759 252659 23672 60542 2409 61735 8923 25521 0366 170940 8477 93265 1278 105614 4136 161009 59495 148659 12276 147796 13306 122932				-	S NO ATAC	FACK EMISS	IONS FROM	DATA ON STACK EMISSIONS FROM BPCL KOCHI REFINERY (IREP Units)	HI REFINER	Y (IREP Un	its)				
STACK / samples Permitted emission analysed built from the matter mg/Nm3 Sulphur dioxide mg/Nm3 Emission rate from the matter mg/Nm3 Sulphur dioxide mg/Nm3 Emission rate from the matter mg/Nm3 Sulphur dioxide mg/Nm3 Emission rate from the matter mg/Nm3 Permitted built from matter mg/Nm3 Avg. min max Avg. min max Emission rate matter mg/Nm3 min max Avg. min max min max SRU III Train B 3 92500 1 2 18.30 966.21 636.3 8247 90836 DHDT 4 254000 5.8 37.68 25.6 176.62 251.30 203.8 2236.6 60542 DHDT 3 59000 21.2 28.91 24.4 13.10 96.32 54.7 52656 DHDT 3 59000 21.2 28.91 24.4 13.10 96.32 54.7 52656 DCU-1 4 25000 19.2 32.7 27.5 18.47 68.00 48.7 17094 DCU-						PERIOD - 15	⁴ April 2022	to 30 th Sep	tember 202	12					
STACK samples relinited UNIT remission analysed Remission min max Avg. min min max Avg. min min max Avg. min min min max Avg. min			, C	Do sei man	Particul	ate matter	mg/Nm3	Sulphur		g/Nm3	Emiss		Nm3/hr.	Perc	Percentage compliance
SRUIII Train B 3 92500 5.8 37.68 25.70 66.21 636.3 82247 SRUII Train B 3 92500 5.8 37.68 25.6 15.70 859.68 56.3 82247 CDU III 4 254000 5.8 37.68 25.6 176.62 251.30 203.8 223672 DHDT 3 59000 21.2 28.91 24.4 13.10 96.32 54.7 52409 PFCCU Heater 4 55000 19.5 32.71 27.5 18.30 29.43 22.5 48923 PFCCU Regnrtr. 4 22400 19.3 33.81 24.9 34.67 68.00 48.7 2366 PFCCU Regnrtr. 4 235550 22.8 31.20 25.9 10.40 110.00 54.9 18477 DCU-1 4 235550 22.8 31.20 25.9 10.40 110.00 54.9 143.6 HRSG 4 2 1005907	Sl.no.		samples analysed	emission Nm3/hr.	ri Li	тах	Avg.	mim	тах	Avg.	min	тах	Avg.	SPCB	MOEF
SRUIII Train B 3 92500 5.8 37.68 25.6 15.70 859.68 563.6 89759 CDU III 4 254000 5.8 37.68 25.6 176.62 251.30 203.8 223672 DHDT 3 59000 21.2 28.91 24.4 13.10 96.32 54.7 52409 PFCU Heater 4 55000 19.5 32.71 27.5 18.30 29.43 22.5 48923 PFCU Heater 4 22400 19.3 32.71 27.5 18.30 29.43 22.5 48923 DCU -1 4 22400 19.3 33.81 24.9 34.67 68.00 48.7 2036 DCU -1 4 80000 3.27 19.20 10.40 110.00 54.9 18477 HRSG 3 2 1095907 24.85 27.36 26.1 47.56 47.68 44.6 159495 HRSG 5 2 1095907 29.80 </td <td>1</td> <td>SRU III Train A</td> <td>3</td> <td>92500</td> <td></td> <td></td> <td></td> <td>18.30</td> <td>966.21</td> <td>636.3</td> <td>82247</td> <td>90836</td> <td>88342</td> <td>100</td> <td>100</td>	1	SRU III Train A	3	92500				18.30	966.21	636.3	82247	90836	88342	100	100
CDUIII 4 254000 5.8 37.68 25.6 176.62 251.30 203.8 223672 DHDT 3 59000 21.2 28.91 24.4 13.10 96.32 54.7 52409 VGO-HDT 4 55000 19.5 32.71 27.5 18.30 29.43 22.5 48923 PFCCU Regnrtr. 4 22400 19.3 33.81 24.9 34.67 68.00 48.7 20366 PFCCU Regnrtr. 4 235250 22.8 31.20 25.9 10.40 110.00 54.9 18477 DCU-1 4 80000 3.27 19.20 10.6 18.30 24.45 20.9 71278 HRSG 3 2 1095907 24.85 27.36 26.1 41.56 47.6 47.57 48.8 44.8 67.53 74.17 70.9 142276 HRSG-5 2 1095907 22.48 27.52 29.83 26.7 59.83 26.7	2	SRU III Train B	3	92500				15.70	89.68	563.6	89759	252659	90242	100	100
OHDT 3 59000 21.2 28.91 24.4 13.10 96.32 54.7 52409 VGO-HDT 4 55000 19.5 32.71 27.5 18.30 29.43 22.5 48923 PFCCU Heater 4 22400 19.3 33.81 24.9 34.67 68.00 48.7 20366 PFCCU Regnrtr. 4 235250 22.8 31.20 25.9 10.40 110.00 54.9 18477 DCU-1 4 80000 3.27 19.20 10.6 18.30 24.45 20.9 71278 HRSG3 2 1095907 24.85 27.36 26.1 41.56 47.68 44.6 153495 HRSG4 2 1095907 29.86 33.72 31.8 67.53 74.17 70.9 142276 UB12 2 1095907 23.54 29.80 26.7 59.83 261.70 160.8 13360 1083 2 1083	3	CDUIII	4	254000	5.8	37.68	25.6	176.62	251.30	203.8	223672	60542	244257	100	100
VGO-HDT 4 55000 19.5 32.71 27.5 18.30 29.43 22.5 48923 PFCCU Heater 4 22400 19.3 33.81 24.9 34.67 68.00 48.7 20366 PFCCU Regnrtr. 4 235250 22.8 31.20 25.9 10.40 110.00 54.9 18477 DCU-I 4 80000 3.27 19.20 10.6 18.30 24.45 20.9 71278 DCU-I 4 80000 3.28 13.70 6.8 23.50 27.61 25.3 74136 HRSG3 2 1095907 24.85 27.36 26.1 41.56 47.68 44.6 153495 HRSG4 2 1095907 29.86 33.72 31.8 67.53 74.17 70.9 142276 UB12 2 1095907 23.54 29.80 26.7 59.83 261.70 160.8 13360 10B13 2 1095907	4	DHDT	3	29000	21.2	28.91	24.4	13.10	96.32	54.7	52409	61735	57210	100	100
PFCCU Heater 4 22400 19.3 33.81 24.9 34.67 68.00 48.7 20366 PFCCU. Regnrtr. 4 235250 22.8 31.20 25.9 10.40 110.00 54.9 18477 DCU-1 4 80000 3.27 19.20 10.6 18.30 24.45 20.9 71278 HRSG3 2 1095907 24.85 27.36 26.1 41.56 47.68 44.6 152495 HRSG-5 2 1095907 29.86 33.72 31.8 67.53 74.17 70.9 142276 HRSG-5 2 1095907 29.86 33.72 44.8 61.33 69.80 65.6 143306 UB12 2 1095907 23.54 29.80 26.7 59.83 261.70 160.8 133567	5	VGO-HDT	4	55000	19.5	32.71	27.5	18.30	29.43	22.5	48923	25521	54701	100	100
PFCCU. Regnrtr. 4 235250 22.8 31.20 25.9 10.40 110.00 54.9 18477 DCU-1 4 80000 3.27 19.20 10.6 18.30 24.45 20.9 71278 DCU-2 3 80000 3.28 13.70 6.8 23.50 27.61 25.3 74136 HRSG 3 2 1095907 24.85 27.36 26.1 41.56 47.68 44.6 159495 HRSG 4 2 1095907 29.86 33.72 31.8 67.53 74.17 70.9 142276 UB12 2 1095907 23.54 29.80 26.7 59.83 261.70 160.8 13366 UB13 2 1095907 27.4 30.82 29.1 78.93 261.70 160.8 133567	9	PFCCU Heater	4	22400	19.3	33.81	24.9	34.67	68.00	48.7	20366	170940	22736	100	100
DCU-1 4 80000 3.27 19.20 10.6 18.30 24.45 20.9 71278 DCU-2 3 80000 3.28 13.70 6.8 23.50 27.61 25.3 74136 HRSG 3 2 1095907 24.85 27.36 26.1 41.56 47.68 44.6 159495 HRSG-5 2 1095907 29.86 33.72 31.8 67.53 74.17 70.9 142276 UB12 2 1095907 23.54 29.80 26.7 59.83 261.70 160.8 113585 UB13 2 1095907 27.4 30.82 29.1 78.93 261.70 160.8 113585	7	PFCCU. Regnrtr.	4	235250	22.8	31.20	25.9	10.40	110.00	54.9	18477	93765	108766	100	100
DCU-2 3 80000 3.28 13.70 6.8 23.50 27.61 25.3 74136 HRSG 4 2 1095907 24.85 27.36 26.1 41.56 47.68 44.6 159495 HRSG 4 2 1095907 29.86 33.72 31.8 67.53 74.17 70.9 142276 UB12 2 1095907 23.54 29.80 26.7 59.83 261.70 160.8 113585 UB13 2 1095907 27.4 30.82 29.1 78.43 261.70 160.8 133587	8	DCU-1	4	80000	3.27	19.20	10.6	18.30	24.45	-20.9	71278	105614	79776	100	100
HRSG 4 2 1095907 24.85 27.36 26.1 41.56 47.68 44.6 159495 HRSG 4 2 1095907 29.86 33.72 31.8 67.53 74.17 70.9 142276 HRSG-5 2 1095907 42.15 47.52 44.8 61.33 69.80 65.6 143306 UB12 2 1095907 23.54 29.80 26.7 59.83 261.70 160.8 113585 UB 13 2 1095907 27.4 30.82 29.1 78.43 302.60 225.8 122507	6	DCU -2	3	80000	3.28	13.70	6.8	23.50	27.61	25.3	74136	161009	85587	100	100
HRSG-4 2 1095907 29.86 33.72 31.8 67.53 74.17 70.9 142276 HRSG-5 2 1095907 42.15 47.52 44.8 61.33 69.80 65.6 143306 UB12 2 1095907 23.54 29.80 26.7 59.83 261.70 160.8 113585 UB 13 2 1095907 27.4 30.82 29.1 78.43 302.60 225.8 1225.07	10	HRSG 3	2	1095907	24.85	27.36	26.1	41.56	47.68	44.6	159495	148659	160252	100	100
HRSG-5 2 1095907 42.15 47.52 44.8 61.33 69.80 65.6 143306 UB12 2 1095907 23.54 29.80 26.7 59.83 261.70 160.8 113585 UB 13 2 1095907 27.4 30.82 29.1 78.93 30.50 225.8 122507	11	HRSG 4	2	1095907	29.86	33.72	31.8	67.53	74.17	70.9	142276	147796	145468	100	100
UB12 2 1095907 23.54 29.80 26.7 59.83 261.70 160.8 113585 UB13 2 1095907 27.4 30.82 29.1 78.93 392.60 235.8 133567	12	HRSG-5	2	1095907	42.15	47.52	44.8	61.33	69.80	65.6	143306	122932	145551	100	100
UB13 2 1095907 27.4 30.82 79.1 78.93 397.60 735.8 1735.07	13	UB12	2	1095907	23.54	29.80	26.7	59.83	261.70	160.8	113585	126260	118259	100	100
11551 05.55	14	UB 13	2	1095907	27.4	30.82	29.1	78.93	392.60	235.8	123507	126260	124884	100	100

T

Fermatter Emission rate Nm3/hr. Percent Compliance ANG min max avg min max avg min percent Compliance 21 36.55 22.30 360.83 191.23 22953 35250 28424.5 100 22 22.30 360.83 191.23 22953 35250 28424.5 100 23 22.30 360.83 191.23 22953 35250 28424.5 100 25 21.04 204.42 212.77 208.35 22719 24235 23728.0 100 28 21.04 204.42 212.77 208.35 22719 24235 23728.0 100 28 21.04 204.42 212.77 208.35 22719 24235 23728.0 100 28 42.09 598.31 823.61 20213 24235 100 28 42.09 598.31 821.63 22719 24235 2378.0 <t< th=""><th></th><th></th><th></th><th>DATA ON STACK EMISSIONS</th><th>CK EMISS</th><th></th><th>M BPCL K</th><th>OCHI REFIN</th><th>ERY (Old I</th><th>Refinery inc</th><th>FROM BPCL KOCHI REFINERY (Old Refinery including CEMP - 11)</th><th>(II - II)</th><th></th><th></th><th></th></t<>				DATA ON STACK EMISSIONS	CK EMISS		M BPCL K	OCHI REFIN	ERY (Old I	Refinery inc	FROM BPCL KOCHI REFINERY (Old Refinery including CEMP - 11)	(II - II)			
FIACE No. of emission and signature matter Permitted and signature matter Permitted and signature matter STACK / samples and signature matter and signature matter and signature and signatur					PER		April 2022	to 30th Sep	tember 2	0222022					
MATALY Smithing min max Avg min min <th< th=""><th></th><th>/ VOATS</th><th>No. of</th><th>Permitted</th><th>Part</th><th>iculate ma</th><th>ıtter</th><th>Sulphur</th><th></th><th>ng/Nm3</th><th>Emissi</th><th></th><th>n3/hr.</th><th>Perce</th><th>ntage liance</th></th<>		/ VOATS	No. of	Permitted	Part	iculate ma	ıtter	Sulphur		ng/Nm3	Emissi		n3/hr.	Perce	ntage liance
KH1B 4 45000 7.3 64,21 36,52 22,33 36,03 191,23 32,953 352,50 284,45 100 MINZ/HIL 3 102000 8.2 72,19 49,07 226,28 23,431 230,90 48438 7221 57888.0 100 HIL 4 250000 6.5 37,25 21,04 204,22 212,27 208,35 22739 24838 100 100 UBBO 4 150000 9.4 60,28 37,41 49,70 141,70 108,82 83261 94938 100 100 UBBO 4 136000 2.7 63,82 42,73 212,27 20,835 27,21 100 20 UBBO 4 136000 124 63,84 43,75 293,20 82,83 32,81 30,93 30,848 100 30 UBBO 4 130000 124 63,84 43,75 293,23 20,243 23,243	Sl.no.		analyse	emission Nm3/hr.	min	max	Avg.	min	max	avg	min	max	avg	SPCB	MoEF
HH2/HH1 3 102000 8.2 72.19 49.07 22.28 234.31 230.30 48438 72221 5788.0 100 HH1 4 25000 6.5 37.25 21.04 20.42 212.27 208.35 22719 24235 237280 100 HH3/CDB 4 150000 9.4 60.28 37.41 49.70 141.70 108.82 82261 99308 90688.8 100 100 UBB 4 136000 2.7 63.82 42.09 598.31 822.00 77.83 21825 92643 400 100 90	,	KH 18	4	45000	7.3	64.21	36.55	22.30	360.83	191.23	22953	35250	28424.5	100	100
H11 4 25000 6.5 37.25 21.04 204.42 212.27 208.35 22719 24235 23728.0 100 H3100B 4 150000 9.4 60.28 37.41 49.70 141.70 108.82 83261 99308 90688.8 100 100 UB10 4 150000 2.27 63.82 42.09 598.31 822.00 72.783 21825 92643 4598.8 100 100 DBH 1 4 700000 20.5 67.23 67.33 823.06 67.552 288.70 52493 4598.8 100 100 DBH 1 4 700000 10.6 6.34 43.75 293.20 87.39 257.31 288.749 25717 294.8 100 37.90 37.90 37.90 37.30 37.30 37.30 37.30 37.30 37.30 37.30 37.30 37.30 37.30 37.30 37.30 37.30 37.30 37.30 37.30	2	NH2/HH1	en en	102000	8.2		49.07	226.28	234.31	230.30	48438	72221	57888.0	100	100
HH3/COB 4 150000 9.4 60.28 37.41 49.70 141.70 108.82 83261 99308 90688.8 100 UB10 4 136000 22.7 63.82 42.09 598.31 822.00 777.83 21825 92643 45994.8 100 UB9 4 70000 20.5 67.23 45.42 521.37 823.60 672.52 28870 61493 45984.8 100 DDH1 4 70000 10.4 63.84 43.75 293.0 84.193 587.49 25717 29513 40387 CH21 4 70000 17.6 40.41 30.31 34.50 58.73 1478 1478 100 379.47 100 CH22 4 130000 9.2 30.27 18.63 135.96 25.31 37.60 37.56 27.31 2336 26.47 256.03 100 CH22 4 4 30.21 18.63 37.59	3	FH1	4	25000	6.5	37.25	21.04	204.42	212.27	208.35	22719	24235	23728.0	100	100
UBDO 4 136000 22.7 63.82 42.09 598.31 822.00 727.83 21825 92643 45984.8 100 DBS 4 70000 20.5 67.23 45.42 521.37 823.66 672.52 28870 61493 40328.3 100 DSX 002 4 70000 20.5 67.23 45.42 521.37 823.66 672.52 28870 61493 40328.3 100 DDH1 4 70000 17.6 40.41 30.31 345.50 688.02 57.31 2336 26447 5256.3 100 CH21 4 130000 3.2 30.24 37.50 31.55 27.34 31.35 27.34 31.58 31.59 27.34 31.05 31.00 31.00 CH21 4 4 3.75 13.60 31.55 27.34 31.75 11.95 11.05 31.00 CH22 4 4 3.5 3.5 3.5 <	9 4	FH3/COB	4	150000	9.4	60.28	37.41	49.70	141.70	108.82	83261	80866	8.88906	100	100
UBB 4 700000 20.5 67.23 45.42 521.37 823.66 67.25 2887.0 61493 40328.3 100 DSX 002 4 35000 19.4 63.84 43.75 293.20 841.93 587.49 25711 29613 27934.5 100 DDH1 4 270000 17.6 40.41 30.31 345.50 688.02 572.31 23336 26447 25260.3 100 CH21 4 270000 17.6 40.41 30.31 345.50 688.02 572.31 23336 26477 25260.3 100 CH21 4 270000 17.6 40.41 30.31 345.50 478.48 11478 100688 73204.3 100 CH22 4 35000 23.5 45.95 35.20 195.36 154.25 11198 11398 1200.3 100 CH22 3 3 3 35.20 35.20 153.50 154.55 11		UB10	4	136000	22.7	63.82	42.09	598.31	822.00	727.83	21825	92643	45984.8	100	100
DEM 4 35000 19.4 63.84 43.75 293.20 841.93 587.49 25711 29613 27934.5 100 DEM 4 27000 17.6 40.41 30.31 345.50 688.02 572.31 2336 26447 25260.3 100 CH21 4 130000 9.2 30.27 18.63 180.60 375.96 278.48 11478 100688 73204.3 100 CH22 4 35000 7.9 71.34 37.60 103.60 312.55 203.18 2529 340.73 30168 730.43 100 CH22 4 35000 7.9 71.34 37.60 103.60 315.55 203.18 11478 100688 730.73 100 CPAPINGS 2 150000 23.2 45.38 35.29 44.50 25.45 11474 18726 1566.50 100 CH223 3 2 12.85 45.60 271.08 190.4	2	UB9	4	70000	20.5	67.23	45.42	521.37	823.66	672.52	28870	61493	40328.3	100	100
CH21 4 27000 17.6 40.41 30.31 345.50 688.02 572.31 2336 26447 25260.3 100 CH21 4 130000 9.2 30.27 18.63 186.50 278.48 11478 100688 73204.3 100 CH22 4 35000 7.9 71.34 37.60 103.60 312.55 203.18 25924 34017 30115.8 100 UB7 2 150000 23.6 46.35 35.28 5.20 195.36 111963 113958 11296.5 100 CPP/HRSG 2 150000 23.2 45.38 35.29 44.50 263.99 154.25 111963 113958 11296.5 100 CH 223 4 3 30.24 21.85 44.50 271.08 190.04 14174 18726 1580.5 100 GH 23 3 2 3 3 2 3 44.50 2 2 40.6	2	DSX 002	4	35000	19.4	63.84	43.75	293.20	841.93	587.49	25171	29613	27934.5	100	100
CH21 4 130000 9.2 30.27 18.63 180.60 375.96 278.48 11478 100688 73204.3 100 CH22 4 35000 7.9 71.34 37.60 103.60 312.55 203.18 25924 34017 30115.8 100 UB7 2 150000 23.5 46.95 35.28 5.20 195.36 100.28 111963 113958 112960.5 100 CPP/HRSG 2 150000 23.2 47.38 35.29 44.50 271.08 154.25 151717 161184 156450.5 100 BITUROX 3 230000 12.3 30.24 21.85 44.50 271.08 150.44 46378 68555 5386.9 100 GHZ33 4 51000 6.2 35.86 19.68 1.85 44.50 271.08 140.44 46378 68555 5386.98 100 GHZ42 4 4 4 4 4 </td <td>00</td> <td>DDHI</td> <td>4</td> <td>27000</td> <td>17.6</td> <td>40.41</td> <td>30.31</td> <td>345.50</td> <td>688.02</td> <td>572.31</td> <td>23336</td> <td>26447</td> <td>25260.3</td> <td>100</td> <td>100</td>	00	DDHI	4	27000	17.6	40.41	30.31	345.50	688.02	572.31	23336	26447	25260.3	100	100
CH22 4 35000 7.34 37.60 103.60 312.55 203.18 25924 34017 3015.8 100 UB7 2 150000 23.6 46.95 35.28 5.20 195.36 100.28 11963 113958 12960.5 100 CPP/HRSG 2 150000 23.2 46.95 35.29 44.50 271.08 190.04 14174 161184 156450.5 100 100 CH 223 3 227000 12.3 30.24 21.85 44.50 271.08 190.04 14174 18726 156450.5 100 100 CH 223 4 51000 6.2 35.86 19.68 125.80 240.04 46378 68555 53869.8 100 GH 22000 5.2 35.86 19.68 125.80 27.10 31.69 27.10 31.69 31.79 31.69 31.09 31.09 H 22000 23.84 33.20 27.10 586.00 813.99<	0 0	CH21	4	130000	9.2	30.27	18.63	180.60	375.96	278.48	11478	100688	73204.3	100	100
UBT CPP/HRSG 2.3 46.95 35.28 5.20 195.36 100.28 111963 113958 112960-5 100 CPP/HRSG 2 277900 23.2 47.38 35.29 44.50 263.99 154.25 151717 161184 156450-5 100 BITUROX 3 23000 12.3 30.24 21.85 44.50 271.08 190.04 14174 18726 15804-3 100 CH 223 4 51000 6.2 35.86 19.68 125.80 37.79 240.64 46378 68555 53869.8 100 G12 HRSG 3 427000 20.4 45.88 33.69 7.80 74.17 31.69 122021 254712 176200.0 100 UBIT 4 158000 23.84 33.20 27.10 586.00 813.94 48356 7037 110376 85715.3 100 WHTCR 2 118000 15.4 59.82 37.61 26	10	CH22	4	35000	7.9	71.34	37.60	103.60	312.55	203.18	25924	34017	30115.8	100	100
CPP/HRSG 2 277900 23.2 47.38 35.29 44.50 263.99 154.25 151717 161184 156450.5 100 BITUROX 3 23000 12.3 30.24 21.85 44.50 271.08 190.04 14174 18726 15804.3 100 CH 223 4 51000 6.2 35.86 19.68 125.80 357.79 240.64 46378 68555 5386.98 100 GH 2 4 51000 6.2 35.86 19.68 7.80 74.17 31.69 122021 254712 17620.0 100 UB 11 4 158000 20.4 45.88 33.69 7.80 74.17 31.69 17.31 104483 119375 11020.0 100 WHTCR 2 118000 15.4 59.82 37.61 2.61 232.00 117.31 104483 119375 110220.0 100 WHH 02 3 220000 20.82 28.32	11	LIRZ	2	150000	23.6	46.95	35.28	5.20	195.36	100.28	111963	113958	112960.5	100	100
BITUROX 3 23000 12.3 30.24 21.85 44.50 271.08 190.04 14174 18726 15804.3 100 CH 223 4 51000 6.2 35.86 19.68 125.80 357.79 240.64 46378 68555 53869.8 100 GH 223 4 51000 6.2 35.86 19.68 17.80 74.17 31.69 122021 254712 176200.0 100 UB 11 4 158000 23.84 33.20 27.10 586.00 813.94 693.70 68787 110376 85715.3 100 WH CCR 2 118000 15.4 59.82 37.61 2.61 232.00 117.31 104483 119375 11029.0 100 WH OZ 3 72000 20.82 28.32 24.25 310.33 327.35 318.84 48356 70327 5697.0 100 DSX-301 4 70.06 31.4 70.34 53.30 <td>12</td> <td>CPD/HRSG</td> <td></td> <td>277900</td> <td>23.2</td> <td>47.38</td> <td>35.29</td> <td>44.50</td> <td>263.99</td> <td>154.25</td> <td>151717</td> <td>161184</td> <td>156450.5</td> <td>100</td> <td>100</td>	12	CPD/HRSG		277900	23.2	47.38	35.29	44.50	263.99	154.25	151717	161184	156450.5	100	100
CH 223 4 51000 6.2 35.86 19.68 125.80 357.79 240.64 46378 68555 53869.8 100 GT2 HRSG 3 4 51000 20.4 45.88 33.69 7.80 74.17 31.69 122021 254712 176200.0 100 UB 11 4 158000 23.84 33.20 27.10 586.00 813.94 693.70 68787 110376 1500 100 NHTCR 2 118000 15.4 59.82 37.61 2.61 232.00 117.31 104483 119375 11029.0 100 VHH 02 3 72000 20.82 28.32 24.25 310.33 327.35 318.84 48356 70327 5697.0 100 DSX-301 4 22000 24.8 58.17 43.15 83.80 127.35 691.46 52588 39999.8 100	13	BITUROX	ı m	23000	12.3	30.24	21.85	44.50	271.08	190.04	14174	18726	15804.3	100	100
GTZ HRSG 3 427000 20.4 45.88 33.69 7.80 74.17 31.69 122021 254712 176200.0 100 UB 11 4 158000 23.84 33.20 27.10 586.00 813.94 693.70 68787 110376 85715.3 100 NHTCCR 2 118000 15.4 59.82 37.61 2.61 232.00 117.31 104483 119375 111929.0 100 VHH 02 3 72000 20.82 28.32 24.25 310.33 327.35 318.84 48356 70327 56972.0 100 DSX-301 4 22000 24.8 58.17 43.15 83.80 1127.35 691.46 1268 14310 13784.3 100 DSX-301 4 70000 31.4 70.34 53.30 416.20 890.61 689.18 29524 52588 39999.8 100	14	CH 223	4	51000	6.2	35.86	19.68	125.80	357.79	240.64	46378	68555	53869.8	100	100
UB 11 4 158000 23.84 33.20 27.10 586.00 813.94 693.70 68787 110376 85715.3 100 NHTCR 2 118000 15.4 59.82 37.61 2.61 232.00 117.31 104483 119375 11929.0 100 VHH 02 3 72000 20.82 28.32 24.25 310.33 327.35 318.84 48356 70327 56972.0 100 DSX-301 4 22000 24.8 58.17 43.15 83.80 1127.35 691.46 12668 14310 13784.3 100 DSX-301 4 70000 31.4 70.34 53.30 416.20 890.61 689.18 29524 52588 39999.8 100	15	GT2 HRSG	3	427000	20.4	45.88	33.69	7.80	74.17	31.69	122021	254712	176200.0	100	100
NHTCCR 2 118000 15.4 59.82 37.61 2.61 232.00 117.31 104483 119375 111929.0 100 VHH 02 3 72000 20.82 28.32 24.25 310.33 327.35 318.84 48356 70327 56972.0 100 DSX-301 4 22000 24.8 58.17 43.15 83.80 1127.35 691.46 12668 14310 13784.3 100 UBS 4 70000 31.4 70.34 53.30 416.20 890.61 689.18 29524 52588 39999.8 100	16	UB 11	4	158000	23.84	33.20	27.10	586.00	813.94	693.70	68787	110376	85715.3	100	100
VHH 02 3 72000 20.82 28.32 24.25 310.33 327.35 318.84 48356 70327 56972.0 100 DSX-301 4 22000 24.8 58.17 43.15 83.80 1127.35 691.46 12668 14310 13784.3 100 UBS 4 70000 31.4 70.34 53.30 416.20 890.61 689.18 29524 52588 39999.8 100	17	NHTCCR	2	118000	15.4	59.82	37.61	2.61	232.00	117.31	104483	119375	111929.0	100	100
DSX-301 4 22000 24.8 58.17 43.15 83.80 1127.35 691.46 12668 14310 13784.3 100 UBS 4 70000 31.4 70.34 53.30 416.20 890.61 689.18 29524 52588 3999.8 100	1 0	VHH 02	3	72000	20.82	28.32	24.25	310.33	327.35	318.84	48356	70327	56972.0	100	100
UBS 4 70000 31.4 70.34 53.30 416.20 890.61 689.18 29524 52588 3999.8 100	19	DSX-301	4	22000	24.8	58.17	43.15	83.80	1127.35	691.46	12668	14310	13784.3	100	100
	20	UB8	4	70000	31.4	70.34	53.30	416.20	890.61	689.18	29524	52588	39999.8	100	100

AMBIENT AIRQUALITY DATA FOR THE HALF YEAR PERIOD 1st April 2022 to 30th September 2022

			AAQMS - M	larketing			
Parameter	unit	Apr. 22	May. 22	Jun 22	July 22	Aug. 22	Sept.22
SO2	μg/m3	35.81	41.25	20.03	10.21	24.32	49.69
NOx	μg/m3	1.28	0.99	1.29	2.87	7.09	22.74
NH3	ug/m3	0.00	0.10	0.45	4.25	10.52	4.51
CO	mg/m3	0.91	0.83	0.89	0.96	0.56	0.56
Benzene	μg/m3	0.11	0.10	0.09	0.08	0.09	0.13
Methane	ppm	0.00	0.00	0.00	0.00	0.02	0.00
NMHC	ppm	0.00	0.00	0.00	0.00	0.00	0.00
PM 10	μg/m3	56.20	48.14	34.80	36.42	37.03	41.74
PM 2.5	μg/m3	32.97	27.69	20.39	18.84	17.40	20.65

			AAQMS -	Colony			
Parameter	unit	Apr. 22	May. 22	Jun 22	July 22	Aug. 22	Sept.22
SO2	μg/m3	15.01	16.78	18.73	19.92	19.35	22.82
NOx	μg/m3	23.47	21.04	17.70	15.15	19.92	18.71
NH3	ug/m3	34.13	25.17	14.87	4.77	2.37	2.10
СО	mg/m3	0.48	1.02	1.33	1.27	1.30	1.36
Benzene	μg/m3	0.10	0.05	0.00	0.00	0.00	0.00
Methane	ppm	1.71	0.00	0.04	0.02	0.02	0.02
NMHC	ppm	1.71	0.00	0.01	0.00	0.00	0.01
PM 10	μg/m3	52.61	45.95	33.14	30.18	33.78	40.38
PM 2.5	μg/m3	27.82	20.86	15.69	15.47	17.09	20.02

			DHD	S			
Parameter	unit	Apr. 22	May. 22	Jun 22	July 22	Aug. 22	Sept.22
SO2	μg/m3	5.06	4.82	8.81	11.34	14.30	16.91
NOx	μg/m3	5.50	3.13	4.77	7.33	8.65	11.03
NH3	ug/m3	0.00	0.03	0.00	0.00	0.29	0.00
CO	mg/m3	0.61	0.64	0.74	0.57	0.80	1.24
Benzene	μg/m3	0.01	0.03	0.03	0.05	0.06	0.07
Methane	ppm	0.03	0.03	0.01	0.00	0.02	0.00
NMHC	ppm	0.01	0.02	0.04	0.00	0.00	0.00
PM 10	'μg/m3	40.01	32.84	24.03	26.60	26.86	32.14
PM 2.5	μg/m3	26.45	21.88	13.38	15.15	14.87	20.40

		AA	AQMS - CISE	Townsh	ip		
Parameter	unit	Apr. 22	May. 22	Jun 22	July 22	Aug. 22	Sept.22
SO2	μg/m3	6.19	4.40	9.25	10.96	11.77	13.39
NOx	μg/m3	23.26	20.02	26.07	18.33	22.81	17.01
NH3	ug/m3	13.86	12.38	17.54	12.17	15.43	9.65
СО	mg/m3	1.14	1.14	1.23	1.32	1.39	1.56
Benzene	μg/m3	0.07	0.04	0.04	0.05	0.03	0.01
Methane	ppm	0.06	0.18	0.19	0.06	0.00	0.00
NMHC	ppm	0.00	0.00	0.00	0.00	0.00	0.00
PM 10	μg/m3	53.32	48.72	37.41	37.10	35.42	41.24
PM 2.5	μg/m3	31.86	22.86	16.08	12.28	14.62	22.33

AAQMS - NHT CCR									
Parameter	unit	Apr. 22	May. 22	Jun 22	July 22	Aug. 22	Sept.22		
SO2	μg/m3	1.05	1.05	3.17	2.53	2.79	1.60		
NOx	μg/m3	10.00	10.01	10.00	9.99	10.00	10.00		
NH3	ug/m3	1.43	0.00	0.00	0.00	faulty	faulty		
СО	mg/m3	0.56	0.36	0.65	0.20	0.52	0.43		
Benzene	μg/m3	0.00	0.00	0.00	faulty	faulty	faulty		
Methane	ppm	0.01	0.01	0.00	0.01	0.04	0.03		
NMHC	ppm	0.10	0.10	0.02	0.10	0.10	0.10		
PM 10	μg/m3	36.03	31.35	30.26	30.88	31.00	30.36		
PM 2.5	μg/m3	32.20	21.71	14.57	14.00	faulty	faulty		

Annexure - III

TREATED EFLUENT QUALITY DATA FOR THE HALF YEAR PERIOD

1st April 2022 to 30th September 2022

	EffI	uent_	Outlet - A	(monthly	average	value)		
Parameter	limit	unit	Apr. 22	May. 22	Jun 22	July 22	Aug. 22	Sept.22
рН	6 - 8.5		7.83	7.94	7.9	7.7	7.5	7.35
TSS	100	ppm	11.7	10.3	12.2	10.5	9.45	11.77
Oil & Grease	5	ppm	3.3	3.28	3.4	3.3	3.31	3.37
BOD (3 day @27 C.)	15	ppm	11.3	11.5	13.2	12.1	12.4	13.47
Phenol	0.35	ppm	0.13	0.11	0.1	0.1	0.12	0.13
Sulphides	0.5	ppm	0.41	0.4	0.4	0.4	0.4	0.4
COD	125	ppm	33.14	32.5	47	38.6	48.77	46.91
	EffI	uent_	Outlet - B	(monthly	average v	value)		
Parameter	limit	unit	Apr. 22	May. 22	Jun 22	July 22	Aug. 22	Sept.22

Effluent _ Outlet - B (monthly average value)										
Parameter	limit	unit	Apr. 22	May. 22	Jun 22	July 22	Aug. 22	Sept.22		
рН	6 - 8.5		7.15	7.2	7.2	7.2	7.0	7.25		
TSS	100	ppm	12.5	15.2	12.2	10.5	9.6	12.5		
Oil & Grease	5	ppm	3.2	3.5	3.2	3.3	3.3	3.2		
BOD (3 day @27 C.)	30	ppm	13.5	12.5	12.6	12.5	12.0	12.5		

BOREWELL WATER TEST REPORT

Bore well No. 7

Date of Sample: 30.7.2022 Date of Testing: 2.8.2022

KR.TECH.QC.26.DRINK.WATR

SI No:	Test Parameters	Unit	Method	Result	Acceptable lim
5	рН		IS 3025 (P:11)	7.8	6.5 - 8.5
15	Oil	mg/L	IS 3025 (P:39)	nil	nil
	Metals	· ·		•	•
16	Silver (as Ag)	mg/L	IS13428 Annexe J	BDL (MDL=0.005)	0.1 (Max)
17	Aluminium (as Al)	mg/L	IS 3025 (P:55)	BDL(MDL=0.002)	0.03 (Max)
18	Boron (as B)	mg/L	IS 3025 (P:57)	BDL(MDL=0.01)	0.5 (Max)
19	Barium (as Ba)	mg/L	IS13428 Annexe F	BDL(MDL=0.01)	0.7 (Max)
20	Calcium (as Ca)	mg/L	IS 3025 (P:40)	14	75 (Max)
21	Cadmium (as Cd)	mg/l	IS 3025 (P:41)	BDL(MDL=0.001)	0.003 (Max)
22	Chromium (as Cr)	mg/L	IS 3025 (P:52)	BDL(MDL=0.01)	0.05 (Max)
23	Copper (as Cu)	mg/L	IS 3025 (P:42)	BDL(MDL=0.01)	0.05 (Max)
24	Iron (as Fe)	mg/L	IS 3025 (P:53)	0.08	0.3 (Max)
25	Magnesium (as Mg)	mg/L	IS 3025 (P:46)	5	30 (Max)
26	Manganese (as Mn)	mg/L	IS 3025 (P:59)	BDL(MDL≃0.01)	0.1 (Max)
27	Nickel (as Ni)	mg/L	IS 3025 (P:54)	BDL(MDL=0.01)	0.02 (Max)
28	Molybdenum (as Mo)	mg/L	IS 3025 (P:02)	BDL(MDL=0.002	0.07 (Max)
29	Lead (as Pb)	mg/L	IS 3025 (P:47)	BDL(MDL=0.01)	0.01 (Max)
30	Zinc (as Zn)	mg/L	IS 3025 (P:49)	0.1	5 (Max)
31	Arsenic (as As)	mg/L	IS 3025 (P:37)	BDL(MDL0.005)	0.01 (Max)
32	Mercury (as Hg)	mg/L	IS 3025 (P:48)	BDL(MDL0.0001)	0.001(Max)
33	Selenium (as Se)	mg/L	IS 3025 (P:56)	BDL(MDL=0.001)	0.1 (Max)
34	Antimony (as Sb)	mg/L	APHA:3113B	BDL(MDL=0.001)	Max0.1

BDL: Below Detection Limit MDL: Minimum Detection Limit

S.Mahamed Iqbal Manager (Quality Control)

BOREWELL WATER TEST REPORT

Bore well No. 24

Date of Sample: 19.8.2022 Date of Testing: 26.8.2022

KR. TECH OC 26 DRINK WATE

SI No:	Test Parameters	Unit	Method	Result	Acceptable lim
5	рН		IS 3025 (P:11)	7.3	6.5 - 8.5
15	Oil	mg/L	IS 3025 (P:39)	nil	nil
	Metals				1 1111
16	Silver (as Ag)	mg/L	IS13428 Annexe J	BDL (MDL=0.005)	0.1 (Max)
17	Aluminium (as AI)	mg/L	IS 3025 (P:55)	BDL(MDL=0.002)	0.03 (Max)
18	Boron (as B)	mg/L	IS 3025 (P:57)	BDL(MDL=0.01)	0.5 (Max)
19	Barium (as Ba)	mg/L	IS13428 Annexe F	BDL(MDL=0.01)	
20	Calcium (as Ca)	mg/L	IS 3025 (P:40)	12	75 (Max)
21	Cadmium (as Cd)	mg/L	IS 3025 (P:41)	BDL(MDL=0.001)	0.003 (Max)
22	Chromium (as Cr)	mg/L	IS 3025 (P:52)	BDL(MDL=0.01)	0.05 (Max)
23	Copper (as Cu)	mg/L	IS 3025 (P:42)	BDL(MDL=0.01)	0.05 (Max)
24	Iron (as Fe)	mg/L	IS 3025 (P:53)	0.08	0.3 (Max)
25	Magnesium (as Mg)	mg/L	IS 3025 (P:46)	4	30 (Max)
26	Manganese (as Mn)	mg/L	IS 3025 (P:59)	BDL(MDL=0.01)	0.1 (Max)
27	Nickel (as Ni)	mg/L		BDL(MDL=0.01)	0.02 (Max)
28	Molybdenum (as Mo)	mg/L		BDL(MDL=0.002	0.07 (Max)
29	Lead (as Pb)	mg/L		BDL(MDL=0.01)	0.01 (Max)
30	Zinc (as Zn)	mg/L		0.1	5 (Max)
31	Arsenic (as As)	mg/L	IS 3025 (P:37)	BDL(MDL0.005)	0.01 (Max)
32	Mercury (as Hg)	mg/L		BDL(MDL0.0001)	0.001(Max)
33	Selenium (as Se)	mg/L		BDL(MDL=0.001)	0.1 (Max)
34	Antimony (as Sb)	mg/L		BDL(MDL=0.001)	Max0.1

BDL: Below Detection Limit MDL: Minimum Detection Limit

> S.Mahamed Iqbal Manager (Quality Control)

HSE DEPARTMENT

KR.HSE.SAFE.05.SLMR.SKP

02.07.2022

Sub: Noise level at Boundary Wall.

Noise level at various locations near the boundary wall inside the refinery was measured on 02.07.2022 at **NIGHT TIME**. The observed values are given below.

Sl. No.	Location	Sound level	Remarks
1.	South of tank YT-30 (Near to Parking)	56	-
2.	Near T T gate (PDPP gate)	61	-
3.	South of Project warehouse	59	-
4.	220 KV line crossing near rain water harvesting pond	52	-
5.	DHDS Tower No- 1	55	
6.	Rear side of DHDS fire station	53	
7.	Near Chalikkara gate	56	-
8.	Near TK-25	55	
9.	East of MS Block	57	-
10.	South of DHDS Flare	59	÷.
11.	Near NHT-CCR-AAQMS (Near MSBP boundary)	60	
12.	West of tank YT-902(DHDS)	53	-
13.	Rear side of PIBU office(opp. IPTC)	50	-
14.	Bottling plant entrance from refinery(IPTC Road)	59	-
15.	North of LNG skid (GT-2 Road end)	61	-
16.	Near IREP gate	60	-
17.	DCU	63	-
18.	South of UB-12	63	•
19.	North of VGO labour amenity building	58	-
20.	Behind IREP site office	60	-
21.	Below Coke Conveyor area near railway gate(PWC 4)-offline	49	Conveyor Offline
22.	Below Coke Conveyor area near railway gate- RLS-1	45	Conveyor Offline
23.	Below Coke Conveyor area near outlet A -RLS-2	47	Conveyor Offline
24.	Drum Plant gate	56	-

To:

GM (F&S)

(r)

GM (HSE) I/C

HSE DEPARTMENT

KR.HSE.SAFE.05.SLMR.SKP

14.07.2022

Sub: Noise level at Boundary Wall.

Noise level at various locations near the boundary wall inside the refinery was measured on 14.07.2022 at day time. The observed values are given below.

Sl. No.	Location	Sound level	Remarks	
1.	South of tankYT-30 (Near to Parking)	61		
2.	Near T T gate (PDPP gate)	62		
3.	South of Project warehouse	61		
4.	220 KV line crossing near rain water harvesting pond	59	-	
5.	DHDS Tower No- 1	57		
6.	Rear side of DHDS fire station	58	-	
7.	Near Chalikkara gate	59	=	
8.	Near TK-25	62		
9.	East of MS Block	63	-	
10.	South of DHDS Flare	62	-	
11.	Near NHT-CCR-AAQMS (Near MSBP boundary)	64		
12.	West of tank YT-902(DHDS)	58	-	
13.	Rear side of PIBU office(opp. IPTC)	56	-	
14.	Bottling plant entrance from refinery(IPTC Road)	64		
15.	North of LNG skid (GT-2 Road end)	62	-	
16.	Near IREP gate	64	-	
17.	DCU	64	-	
18.	South of UB-12	61	-	
19.	North of VGO labour amenity building	62	-	
20.	Behind IREP site office	63	#	
21.	Below Coke Conveyor area near railway gate(PWC 4)-offline	61	Conveyor Offline	
22.	Below Coke Conveyor area near railway gate- RLS-1	62	Conveyor Offline	
23.	Below Coke Conveyor area near outlet A -RLS-2	63	Conveyor Offline	
24.	Drum Plant gate	62	-	

To:

(r)

GM (HSE) I/C

HSE DEPARTMENT

KR.HSE.SAFE.05.SLMR.SKP

06.08.2022

Sub: Noise level at Boundary Wall.

Noise level at various locations near the boundary wall inside the refinery was measured on 06.08.2022 at NIGHT TIME. The observed values are given below.

Sl. No.	Location	Sound level	Remarks
1.	South of tank YT-30 (Near to Parking)	55	-
2.	Near T T gate (PDPP gate)	60	-
3.	South of Project warehouse	58	-
4.	220 KV line crossing near rain water harvesting pond	51	-
5.	DHDS Tower No- 1	52	
6.	Rear side of DHDS fire station	55	-
7.	Near Chalikkara gate	53	-
8.	Near TK-25	56	*
9.	East of MS Block	56	-
10.	South of DHDS Flare	57	-
11.	Near NHT-CCR-AAQMS (Near MSBP boundary)	59	
12.	West of tank YT-902(DHDS)	52	-
13.	Rear side of PIBU office(opp. IPTC)	51	-
14.	Bottling plant entrance from refinery(IPTC Road)	58	-
15.	North of LNG skid (GT-2 Road end)	60	-
16.	Near IREP gate	59	•
17.	DCU	59	-
18.	South of UB-12	59	-
19.	North of VGO labour amenity building	57	-
20.	Behind IREP site office	58	-
21.	Below Coke Conveyor area near railway gate(PWC 4)-offline	51	Conveyor Offline
22.	Below Coke Conveyor area near railway gate- RLS-1	52	Conveyor Offline
23.	Below Coke Conveyor area near outlet A -RLS-2	50	Conveyor Offline
24.	Drum Plant gate	55	18-

To: DGM (F&S)

(r)

HSE DEPARTMENT

KR.HSE.SAFE.05.SLMR.SKP

12.08.2022

Sub: Noise level at Boundary Wall.

Noise level at various locations near the boundary wall inside the refinery was measured on 12.08.2022 at day time. The observed values are given below.

Sl. No.	Location	Sound level	Remarks
1.	South of tankYT-30 (Near to Parking)		¥
2,	Near T T gate (PDPP gate)	63	
3.	South of Project warehouse	60	-
4.	220 KV line crossing near rain water harvesting pond	59	-
5.	DHDS Tower No- 1	55	
6.	Rear side of DHDS fire station	56	-
7.	Near Chalikkara gate	58	•
8.	Near TK-25	60	
9.	East of MS Block		-
10.	South of DHDS Flare	60	-
11.	Near NHT-CCR-AAQMS (Near MSBP boundary)	61	
12.	West of tank YT-902(DHDS)	57	-
13.	Rear side of PIBU office(opp. IPTC)	57	-
14.	Bottling plant entrance from refinery(IPTC Road)	60	•
15.	North of LNG skid (GT-2 Road end)	59	-
16.	Near IREP gate	61	-,
17.	DCU	62	
18.	South of UB-12	60	-
19.	North of VGO labour amenity building	59	-
20.	Behind IREP site office	58	-
21.	Below Coke Conveyor area near railway gate(PWC 4)-offline	59	Conveyor Offline
22.	Below Coke Conveyor area near railway gate- RLS-1	60	Conveyor Offline
23.	Below Coke Conveyor area near outlet A -RLS-2	58	Conveyor Offline
24.	Drum Plant gate	63	

To:

OGM (F&S)

(r)

GM (HSE) IVE

HSE DEPARTMENT

KR.HSE.SAFE.05.SLMR.SKP

21.09.2022

Sub: Noise level at Boundary Wall.

Noise level at various locations near the boundary wall inside the refinery was measured on 21.09.2022 at day time. The observed values are given below.

Sl. No.	Location	Sound level	Remarks	
1.	South of tankYT-30 (Near to Parking)	62	-	
2.	Near T T gate (PDPP gate)		-	
3.	South of Project warehouse	59	-	
4.	220 KV line crossing near rain water harvesting pond	57	•	
5.	DHDS Tower No- 1	56		
6.	Rear side of DHDS fire station	59	-	
7.	Near Chalikkara gate	61	•	
8.	Near TK-25	60	3 1	
9.	East of MS Block	61	-	
10.	South of DHDS Flare	60	-	
11.	Near NHT-CCR-AAQMS (Near MSBP boundary)	61		
12.	West of tank YT-902(DHDS)	50	-	
13.	Rear side of PIBU office(opp. IPTC)	57	-	
14.	Bottling plant entrance from refinery(IPTC Road)	61		
15.	North of LNG skid (GT-2 Road end)	64	-	
16.	Near IREP gate	61	-	
17.	DCU	63		
18.	South of UB-12	60	- 1000	
19.	North of VGO labour amenity building	62	<u> -</u>	
20.	Behind IREP site office	61	-	
21.	Below Coke Conveyor area near railway gate(PWC 4)-offline	60	Conveyor Offline	
22.	Below Coke Conveyor area near railway gate- RLS-1	63	Conveyor Offline	
23.	Below Coke Conveyor area near outlet A -RLS-2	64	Conveyor Offline	
24.	Drum Plant gate	60	-	

To: I

DGM (F&S)

(r)

GM (HSE) 1/C

HSE DEPARTMENT

KR.HSE.SAFE.05.SLMR.SKP

24.09.2022

Sub: Noise level at Boundary Wall.

Noise level at various locations near the boundary wall inside the refinery was measured on 24.09.2022 at **NIGHT TIME**. The observed values are given below.

Sl. No.	Location	Sound level	Remarks
1.	South of tank YT-30 (Near to Parking)	52	
2.	Near T T gate (PDPP gate)	59	-
3.	South of Project warehouse	56	-
4.	220 KV line crossing near rain water harvesting pond	50	-
5.	DHDS Tower No- 1	55	
6.	Rear side of DHDS fire station	54	-
7.	Near Chalikkara gate	55	
8.	Near TK-25		
9.	East of MS Block	56	-
10.	South of DHDS Flare	58	-
11.	Near NHT-CCR-AAQMS (Near MSBP boundary)	59	
12.	West of tank YT-902(DHDS)	51	-
13.	Rear side of PIBU office(opp. IPTC)	53	-
14.	Bottling plant entrance from refinery(IPTC Road)	57	-
15.	North of LNG skid (GT-2 Road end)	60	-
16.	Near IREP gate	59	-
17.	DCU	59	-
18.	South of UB-12	60	
19.	North of VGO labour amenity building	57	
20.	Behind IREP site office	59	-
21.	Below Coke Conveyor area near railway gate(PWC 4)-offline	51	Conveyor Offline
22.	Below Coke Conveyor area near railway gate- RLS-1	52	Conveyor Offline
23.	Below Coke Conveyor area near outlet A -RLS-2	54	Conveyor Offline
24.	Drum Plant gate	57	- V

To:

DGM (F&S)

(r)

GM-(HSE) 1/C.

BOREWELL WATER TEST REPORT

Bore well No. 70

Date of Sample: 12.4.2022 Date of Testing: 20.4.2022

KR.TECH OC 26 DRINK WATE

SI No:	Test Parameters	Unit	Method	Result	Acceptable limi
5	рН		IS 3025 (P:11)	7.6	6.5 - 8.5
15	Oil	mg/L	IS 3025 (P:39)	nil	nil
	Metals				
16	Silver (as Ag)	mg/L	IS13428 Annexe J	BDL (MDL=0.005)	0.1 (Max)
17	Aluminium (as AI)	mg/L	IS 3025 (P:55)	BDL(MDL=0.002)	0.03 (Max)
18	Boron (as B)	mg/L	IS 3025 (P:57)	BDL(MDL=0.01)	0.5 (Max)
19	Barium (as Ba)	mg/L	IS13428 Annexe F	BDL(MDL=0.01)	0.7 (Max)
20	Calcium (as Ca)	mg/L	IS 3025 (P:40)	23	75 (Max)
21	Cadmium (as Cd)	mg/L	IS 3025 (P:41)	BDL(MDL=0.001)	0.003 (Max)
22	Chromium (as Cr)	mg/L	IS 3025 (P:52)	BDL(MDL=0.01)	0.05 (Max)
23	Copper (as Cu)	mg/L	IS 3025 (P:42)	BDL(MDL-0.01)	0.05 (Max)
24	Iron (as Fe)	mg/L	IS 3025 (P:53)	0.09	0.3 (Max)
25	Magnesium (as Mg)	mg/L	IS 3025 (P:46)	4	30 (Max)
26	Manganese (as Mn)	mg/L	IS 3025 (P:59)	BDL(MDL=0.01)	0.1 (Max)
27	Nickel (as Ni)	mg/L	IS 3025 (P:54)	BDL(MDL=0.01)	0.02 (Max)
28	Molybdenum (as Mo)	mg/L	IS 3025 (P:02)	BDL(MDL=0.002	0.07 (Max)
29	Lead (as Pb)	mg/L	IS 3025 (P:47)	BDL(MDL=0.01)	0.01 (Max)
30	Zinc (as Zn)	mg/L	IS 3025 (P:49)	0.2	5 (Max)
31	Arsenic (as As)	mg/L	IS 3025 (P:37)	BDL(MDL0.005)	0.01 (Max)
32	Mercury (as Hg)	mg/L	IS 3025 (P:48)	BDL(MDL0.0001)	0.001(Max)
33	Selenium (as Se)	mg/L	+	BDL(MDL=0.001)	0.1 (Max)
34	Antimony (as Sb)	mg/L		BDL(MDL=0.001)	Max0.1

BDL: Below Detection Limit MDL: Minimum Detection Limit

S.Mahamed Iqbal Manager (Quality Control)

BOREWELL WATER TEST REPORT

Bore well No. 43

Date of Sample: 20.5.2022 Date of Testing: 27.5.2022

KR.TECH.QC.26, DRINK WATE

SI No:	Test Parameters	Unit	Method	Result	Acceptable limi
5	рН		IS 3025 (P:11)	7.9	6.5 – 8.5
15	Oil	mg/L	IS 3025 (P:39)	nil	nil
	Metals			-	
16	Silver (as Ag)	mg/L	IS13428 Annexe J	BDL (MDL=0.005)	0.1 (Max)
17	Aluminium (as AI)	mg/L	IS 3025 (P:55)	BDL(MDL=0.002)	0.03 (Max)
18	Boron (as B)	mg/L	IS 3025 (P:57)	BDL(MDL=0.01)	0.5 (Max)
19	Barium (as Ba)	mg/L .	IS13428 Annexe F	BDL(MDL=0.01)	
20	Calcium (as Ca)	mg/L	IS 3025 (P:40)	18	75 (Max)
21	Cadmium (as Cd)	mg/L	IS 3025 (P:41)	BDL(MDL=0.001)	0.003 (Max)
22	Chromium (as Cr)	mg/L	IS 3025 (P:52)	BDL(MDL=0.01)	0.05 (Max)
23	Copper (as Cu)	mg/L	IS 3025 (P:42)	BDL(MDL=0.01)	0.05 (Max)
24	Iron (as Fe)	mg/L	IS 3025 (P:53)	0.06	0.3 (Max)
25	Magnesium (as Mg)	mg/L	IS 3025 (P:46)	5	30 (Max)
26	Manganese (as Mn)	mg/L	IS 3025 (P:59)	BDL(MDL=0.01)	0.1 (Max)
27	Nickel (as Ni)	mg/L		BDL(MDL-0.01)	0.02 (Max)
28	Molybdenum (as Mo)	mg/L		BDL(MDL=0.002	0.07 (Max)
29	Lead (as Pb)	mg/L		BDL(MDL=0.01)	0.01 (Max)
30	Zinc (as Zn)	mg/L		0.1	5 (Max)
31	Arsenic (as As)	mg/L	IS 3025 (P:37)	BDL(MDL0.005)	0.01 (Max)
32	Mercury (as Hg)	mg/L		BDL(MDL0.0001)	0.001(Max)
33	Selenium (as Se)	mg/L		BDL(MDL=0.001)	0.1 (Max)
34	Antimony (as Sb) Below Defection Limit	mg/L		BDL(MDL=0.001)	Max0.1

BDL: Below Detection Limit MDL: Minimum Detection Limit

> S.Mahamed Iqbal Manager (Quality Control)

BOREWELL WATER TEST REPORT

Bore well No. 57

Date of Sample: 11.6.2022 Date of Testing: 22.6.2022

SI		KR.TECH.QC.26.DRINK.WATR			
No:	Test Parameters	Unit	Method	Result	Acceptable lim
5	рН		IS 3025 (P:11)	7.5	6.5 - 8.5
15	Oil	mg/L	IS 3025 (P:39)	nil	nil
	Metals				1 1111
16	Silver (as Ag)	mg/L	IS13428 Annexe J	BDI. (MDL=0.005)	0.1 (Max)
17	Aluminium (as Al)	mg/L	IS 3025 (P:55)	BDL(MDL=0.002)	0.03 (Max)
18	Boron (as B)	mg/L	IS 3025 (P:57)	BDL(MDL=0.01)	0.5 (Max)
19	Barium (as Ba)	mg/L	IS13428 Annexe F		
20	Calcium (as Ca)	mg/L	IS 3025 (P:40)	17	75 (Max)
21	Cadmium (as Cd)	mg/L	IS 3025 (P:41)	BDL(MDL=0.001)	0.003 (Max)
22	Chromium (as Cr)	mg/L	IS 3025 (P:52)	BDL(MDL=0.01)	0.05 (Max)
23	Copper (as Cu)	mg/L	IS 3025 (P:42)	BDL(MDL=0.01)	0.05 (Max)
24	Iron (as Fe)	mg/L	IS 3025 (P:53)	0.08	0.3 (Max)
25	Magnesium (as Mg)	mg/L	IS 3025 (P:46)	7	30 (Max)
26	Manganese (as Mn)	mg/L		BDL(MDL=0.01)	0.1 (Max)
27	Nickel (as Ni)	mg/L		BDL(MDL=0.01)	0.02 (Max)
28	Molybdenum (as Mo)	mg/L		BDL(MDL=0.002	0.02 (Max)
29	Lead (as Pb)	mg/L		BDL(MDL=0.01)	0.07 (Max)
30	Zinc (as Zn)	mg/L		0.1	5 (Max)
31	Arsenic (as As)	mg/L		BDL(MDL0.005)	······
32	Mercury (as Hg)	mg/L	10 2025 15		0.01 (Max)
33	Selenium (as Se)	mg/L		BDL(MDL0.0001)	0.001(Max)
34	Antimony (as Sb)	mg/L		BDL(MDL=0.001)	0.1 (Max)
BDL: I	Below Detection Limit	1118/1	APHA:3113B	BDL(MDL=0.001)	Max0.1

MDL: Minimum Detection Limit

(-70 July) S.Mahamed Iqbal Manager (Quality Control)

CORPORATE RESPONSIBILITY FOR ENVIRONMENTAL PROTECTION (CREP) PROGRESS REPORT ON ACTION PO

SI. No.	Task	Remarks/Status
1	All the refineries provide on line emission and effluent monitoring systems and give linkages to SPCB and CPCB server and detailed note shall be submitted by individual refineries indicating number of sensors, make and type etc.	Online connectivity of all Six AAQMS given and intimated to CPCB/KSPCB. All the operating Stacks are being on-line connected to the CPCB site. Total 926 No's of Hydrocarbon (HC) detectors, 267 No's of Hydrogen sulphide (H2S) detectors and 42 No's of Hydrogen (H2) detectors are installed at different locations of refinery including product loading, storage tank farms and process plants etc. Most of sensors are made up of M/s Honeywell. HC sensors belong to Infrared type and H2S/H2 sensors belong to electrochemical type.
2	The refineries shall submit action plan to achieve zero discharge (except once through cooling water in coastal region) within three months.	As part of integrated Refinery cum expansion project (IREP), an integrated ETP has been setup and the 100% treated effluent water is routed to RO plant for further processing and recycling as DM water
3	The HSE department of refineries shall co- ordinate with marketing divisions for submission of note on evaporation during loading, leakage possibilities, steps taken for fire safety, management of oily sludge	HSE department of BPCL has initiated coordination and various measures to control evaporation during loading, leakage, fire safety, management of oily sludge etc. It includes vapor recovery system, bottom loading, fugitive emission survey, LDAR etc. Separate scheme is adopted for the management of oily sludge which includes centrifuging, oil recovery and bioremediation.
4	The refineries who have not completed the task of providing low NOx burners shall complete within six month and submit completion note without further delay.	All the heaters under CEMP phase-II/IREP have been provided with low NOx burners.

1.	Air Pollution Management		
a)	All the Refineries located in the critically polluted areas, identified by CPCB, will submit an action plan for phase wise reduction of SO2 emission from the present level:	Total SO ₂ emission from the refinery is within the limit The allowable limit as per latest CTO is 1579 kg/hr. maintaining well below this value. KR meets its average total SO ₂ emission of 550 kg/hr. from the complex. It contributes to net reduction in SO2 emission by producing Euro- VI MS and Diesel. Following steps are taken to reduce SO2 emissions from the refinery. Modifications to plant fuel system to facilitate usage of low sulfur liquid fuel. Amine treatment of fuel gas Sulfur Recovery Units with 99.9% efficiency as part of IREP with inclusion of TGTU (Tail Gas Treating Unit) Low Pressure Amine treatment of vacuum column vent gas. Employing Biturox technology for Bitumer production, where off gas is incinerated and further treated.	
b)	Future Refineries will have sulphur recovery with minimum 99% efficiency	SRUs have more than 99% efficiency. New SRU have 99.9% efficiency.	
c)	Road map to improve the efficiency of SRU:	BPCL Kochi refinery has been explored the possibility of Oxygen enrichment technology for enhancing the efficiency of SRU and the same has been commissioned.	
d)	With regard to NOx emission, the new Refineries / process units will install low NOx burners. For retrofitting of low NOx burners in existing units the same expert committee will suggest the strategies and action plan within six months:	Refinery, had suggested replacing the burners in heaters with more than 10 million Kcal/hr duty with low NOx type burners. We have installed low NOx in	
e)	The Expert Committee will also suggest an action plan, within 6 months, for control and monitoring of hydrocarbon loss and VOC emissions, leak detection and repair (LDAR) program and vapor	Following provisions exists for VOC control a) Provision of mechanical seals on pumps for leak free operation. b) Use of submerged filling in product loading gantries	

	recovery systems (for loading and unloading operations within Refineries only):	c) Closed blow down system for process plants. d) Floating roof tanks for volatile product storage. e) Conversion of floating roof tanks to double seal arrangement.
		f) Closed loop sampling system in process plants. g) Covered facility for oily effluent storage. h) VOC control system is in place in new ETPs for treatment of VOCs generated during in the effluent treatment area. i) 926 No's of HC detectors, 267 No's of H2S detectors
		and 42 No's of H2 detectors are installed at different locations of refinery including product loading, storage tank farms and process plants etc. j) Benzene monitoring is carried out using "dragger" chip technique in the aromatic recovery unit on a daily
		basis. k) Six ambient air quality monitoring stations (AAQMS) are working online to monitor the ambient air quality on continuous basis. They provide eleven ambient air quality parameters, including hydrocarbons and the data is transferred online to CPCB/KSPCB.
		Vapor recovery system is being implemented in ISOM Naphtha tank farm. New vapor recovery system is being implemented for Benzene & Toluene truck loading area.
f)	The flare losses to be minimized and monitored regularly	Flare losses are monitored continuously through flare meters installed in the process units on a daily basis and are reviewed at the senior management level Further, the fuel gas flow to the pilot burner is maintained at the minimum level required to sustain the pilot flame.
		Various process schemes implemented to reduce flaring. Advanced process control (APC) system was implemented in hydrogen network for decreasing hydrogen flaring. Flare Gas recovery system is installed as part of IREP project and commissioned in December 2017.
g)	Refineries will install continuous emission monitoring systems for SO2 and NOx in major stacks. Action plan for this will be submitted within six months	Kochi Refinery has provided continuous SO₂ and NOx analyzing system for all the heater/boiler stacks and is connected to the CPCB server system.

h) Refineries will also monitor total HC and Benzene in the premises (particularly in loading / unloading operations and ETP). The status and action plan will be submitted within six months

18 No's of HC detectors are installed in the truck loading/wagon loading area.2 No's of HC detectors and 2 No's of H2S detectors are installed in ETP-V area.

Benzene monitoring is carried out using "dragger" chip technique in the aromatic recovery unit on a daily basis.

6 No's of ambient air quality monitoring stations (AAQMS) are installed at the peripheries of the refinery to enable close monitoring of ambient air quality near the refinery area. The ambient air quality information is also communicated to general public through an electronic display board.

2. Waste Water Management:

a) Refineries will prepare an action plan for conservation of water resources and maximizing reuse / recycle of treated effluent within six months. The treated effluent discharge quantity will be limited to 0.4 m3/tons (for 90% of time) except for the monsoon season:

The discharge of treated water from Kochi refinery is 0.17 m3 /MT of crude processed.

Steam condensate in the process plants is being recycled back to the boilers as feed water for the steam generation, there by resulting in reduction in the fresh water consumption. Approximately 130-150 m³/hr. steam condensate is being recycled to steam boilers in the refinery.

The stripped water from the stripped water units is recycled as make up water to the desalting process in the crude unit. 150 m3/hr. of liquid effluent generation is avoided by recycle.

Treated effluent water from the wastewater treatment plants are recycled in RO plant

Oil spill response facilities at Coastal Refineries will be in position within two years:

3

Oil spill response (OSR) facility at Cochin port is already in place. Additionally, BPCL Kochi refinery has procured oil containment booms as part of SBM facilities commissioning to augment the capabilities of oil spill response related facilities. We have also conducted a mock drill to build confidence for the safe operation of SBM facilities with the help of port trust/coast guard personnel. It was decided to further strengthen the oil spill response facilities at Cochin port through purchase and installation of additional equipment and the major share of the investment was shouldered by BPCL Kochi refinery.

Solid Waste Management: Refineries will explore new technologies for reduction in the generation
of oily sludge. Strategy and action plan for liquidation of existing sludge will be submitted within six
months

To reduce the sludge generation, Kochi Refinery follows the following best practices:

- ETP oily sludge is processed continuously in DCU. The oily sludge generated from tank cleaning is also processed in DCU.
- Any excess sludge generated have the provision for oil recovery through centrifuging.
- Switching of service of storage tanks between different crude oils (high wax and low wax) ensures minimum formation of sludge at the bottom of storage tanks.
- Using side entry mixers in the crude oil tank for minimization of sludge accumulation.
- 4. Refineries will carry out monitoring and survey to assess HC loss and concentration of VOC in Ambient Air / Waste Water Treatment Plant.
- a) BPCL Kochi refinery has implemented leak detection and repair (LDAR) program using portable hydrocarbon detector instrument. These programs are carried out on continuous basis on a large number of valves, flanges etc.in all process units and offsite areas. The leaks identified are attended by maintenance crew immediately and are monitored on regular basis.
- b) Secondary seals have been provided in all storage tanks storing volatile hydrocarbons to reduce fugitive hydrocarbon emissions.
- c) HC detectors are installed in sufficient numbers at the storage tank farm areas, process plants, product loading areas and LPG bottling plants in order to identify any hydrocarbon leaks immediately.
- d. Benzene monitoring is carried out using "dragger" chip technique in the aromatic recovery unit on daily basis.
- e. Six ambient air quality monitoring stations (AAQMS) are working online to monitor the ambient air quality on continuous basis. The ambient air quality information is also communicated to public through an electronic display board.
- f. Pressure relief valves for column and vessel are routed to flare to avoid fugitive emission during emergencies.
 - Refineries will assess the quantity of flare gas (install the measurement system if the same is not possible)
- a. At BPCL Kochi refinery, flare losses are monitored continuously from different process units and are reviewed at the senior management level on a daily basis. Flare meters are installed in the process units for this purpose.

Further, the fuel gas flow to the pilot burner is maintained at the minimum level required to sustain the pilot flame.

Various process schemes implemented to reduce flaring

Advanced process control (APC) system was implemented in Hydrogen network for decreasing hydrogen flaring.

Flare gas recovery system is installed as part of IREP project and it can recover around **6.75 TPD** flare gas to fuel gas system.

6. Assessment of Potential leakages from petroleum storage tanks

Inspection of petroleum storage tanks is being carried out by following API 653 standard, OISD standard 129 and other relevant standards. Maintenance work is carried out as per the standard procedure when tank is taken for the outage.

Total 67 No's of bore wells have been constructed at various locations inside the refinery in order to monitor the ground water for any hydrocarbon leakages from the refinery storage tanks and processing plants. The ground water samples from the bore wells are tested periodically for presence of hydrocarbons. In addition, 14 piezometer wells have been installed for monitoring of ground water quality.

7. Cleaner Technology options and information to be provided to CPCB

Clean technologies adopted to combat Air Pollution includes:

- 1. BPCL Kochi refinery has consistently met all deadlines for up gradation of auto fuel quality, set by the Government of India. KR is producing MS and HSD of BS VI norms.
- 2. Hydro desulphurization of feed stock to fluid catalytic cracking unit (FCCU)
- 3. Modifications in plant fuel system facilitate to usage of low sulfur Bombay high vacuum residue as liquid fuel, to lower sulfur dioxide emissions during processing of crude.
- 4. Amine treatment of fuel gas for removal hydrogen sulfide to produce sweet fuel gas.
- Installation five trains of sulfur recovery unit with more than 99.9% recovery.
- 6. Low pressure amine treatment of vacuum column vent gas. This is a unique environmental protection technology developed by BPCL KR for removing toxic hydrogen sulfide gas produced during vacuum distillation process. This technology has been developed exclusively with in-house expertise. The uniqueness of the technology lies in the fact that the process for hydrogen sulfide removal is carried out under extremely low pressure drop conditions.
- 7. Desulphurization of low pressure gas from crude unit overhead and kerosene unit fractionator utilizing amine absorption.

- 8. Reduction furnace for conversion of ammonia stream to nitrogen in order to reduce NOx emissions.
- 9. State of the art Biturox Technology has been adopted for production of Bitumen without any harmful emission. Unlike the traditional bitumen blowing technology, this technology helps for no odor or pollutants emissions. The off gases generated is subjected to incineration and caustic scrubbing in this technique. The waste water stream generated is also oxidized, thereby resulting in zero BOD for effluent. The fresh water consumption is also significantly reduced by the adoption of this technique.
- 10. An electrostatic precipitator has been installed downstream of CO boiler for minimizing particulate matter emission from FCCU regenerator flue gases. As part of PFCCU (part of IREP project) we have installed a tertiary cyclone separator and another ESP (Electrostatic precipitator) for particulate capture.
- 11. Closed loop sampling system in process plants.

b) Clean technologies adopted to improve effluent water quality:

- 1. We have 4 effluent treatment plants catering to the different process units.
- 2. Installation of 5 numbers of sour water strippers and recycling of stripped water in process units.
- 3. Provision of two stage API oil separation system for effluent streams.
- 4. Spent caustic treatment utilizing H2O2 and air oxidation methods for treatment in an in an environment friendly way.
- 5. Closed drainage system for tank farm drains.
- 6. Two stage biological treatment system for effluent streams including tricking filter and activated sludge process, automated Chemostat Treatment and sequential batch reactor.(SBR)
- 7. Hydrogen Peroxide is utilized in our ETP's instead of FeCl3 to avoid chemical sludge formation.
- Chemical de-contamination technique is being adopted at BPCL KR during turnarounds. The vessels, columns etc. are decontaminated using specially formulated chemical which is environment friendly, non-hazardous and fully biodegradable. The Hydrocarbons are recovered in the form of slop after de-emulsification process.

c) Clean technologies implemented for optimal solid waste management

Mechanical oil recovery system for oil recovery from oily sludge. Post IREP ETP sludge is processed in DCU.

- 1. In-situ recovery of oil from crude tank bottom sludge.
- 2. BPCL Kochi refinery constructed two secured landfills for the safe disposal of hazardous solid wastes as per the standard norms laid down by CPCB. The first landfill pit has a capacity of 590m3 and is dedicated to the disposal of FCC catalyst fines and spent molecular sieves. The second land fill pit with a capacity of 390 m3 is dedicated for the disposal of sludge from effluent treatment plants.

- Installation of bio gas plant of capacity 1 T/day to convert canteen food waste into gas for use in canteen. The plant is developed based on the NISARGRUNA technology developed by Bhabha Atomic Research Centre. (BARC)
- 4. We have an agreement with KEIL (Kerala Enviro Infrastructure Limited) for disposing solid hazardous wastes at their TSD Facility.
- 5. Wherever possible, spent catalyst containing recoverable metals are disposed /sold to authorized recyclers only.
- 6. Recycle value e waste materials are being sold to approved recyclers only.

Sustainable Development Projects and Activities added during 1st April 2022 to 30th September 2022

- It was identified that required ATF production can be managed by producing ATF from DHDT and AFT merox whenever diesel hydotreating capacity is not limiting. KHDS which is an old inefficient unit was kept shutdown whenever opportunity exists. This saved 0.6 TPH Fuel, 1.5 TPH, and 0.6 MW Power. Assuming this unit remain shut down for 50% of time, the energy saving is equivalent to 3000 MTOE/yr
- 2. IREP demountable flare has 2 liquid ring compressors for flare gas recovery. It was not possible to operate both compressors in parallel as it was getting tripped in low suction pressure. On detailed analysis it was found that this is happening because of the pressure drop across suction NRV. The NRVs were removed after concurrence from the supplier M/s Garo. This has resulted in additional recovery of 0.7 TPH FG recovery which is equivalent to 6000 MTOE/yr
- 3. BPCL KR has a trap population of around 25000. Hence monitoring and ensuring healthiness was a tedious job in the vast offsite areas. A contract was lined up for trap survey, rectification and up keeping of minimum 95% healthiness. Another third party contract was lined up for performance verification of the maintenance contractor. This has resulted in reduction of offsite steam by around 10 TPH equivalent to 5700MTOE/yr
- 4. As a strategy 6 nos of heavy oil tanks were isolated by maximizing the hot/ direct feed from primary units to downstream units. This resulted in saving of steam in intermediate tanks with steam coils. Estimated saving of 6.5 TPH steam equivalent to 3900MTOE/yr
- As CDU3 was running in full gas firing mode, it was observed that the risk of acid dew point corrosion in APH was low even with ambient air directly entering the gas APH. Hence SCAPH steam was stopped in operation on full gas firing mode. This saved 6 TPH LP Steam equivalent to 3424MTOE/Year
- 6. CEMP 2 flare purge fuel gas was replaced with nitrogen in a phased manner. This has reduced the purge gas requirement by 0.3 TPH FG equivalent to 2600MTOE/yr
- 7. CDU1 plant fuel system caters fuel oil to CDU2, UB7 and UB10. As CDU2 was operating in full gas mode and UB7 and 10 are operated rarely only, the entire plant fuel system was flushed and isolated. It saved around 3 TPH steam. Assuming that the system can remain isolated 50% of time the saving is 900 MTOE/yr
- 8. CDU2 crude heater APH was bypassed partially due to limitation in air flow. APH cleaning, general burner overhauling and refractory rectification was done in turn around. This saved around 45 Kg/Hr. of fuel saving by efficiency improvement equivalent to 400MTOE/yr

- Packinox reactor in CCR had a high pressure drop which forced the stripper to operate at a higher pressure. A scheme in Packinox was implemented for the exchanger spray bars back purge to reduce DP. This has saved 0.5 TPH HP Steam in the stripper re-boiler equivalent to 330MTOE/yr
- 10. DCU CBD slop was being routed to crude slop. A scheme was implemented to reprocess CBD slop internally in DCU. This avoided the reprocessing in CDU again. Assuming 70 TPH slop processing in a week, this gives a saving of 175MTOE/yr
- 11. The loader valves of NHT RGC was always operating at 100%. During turn around, Loader valves adjustment option to operate at variable opening of 25%, 50%, 75% was made available. This has resulted in 130 Kw/hr. Power equivalent to 160MTOE/yr

GREEN COVER AT KOCHI REFINERY

BPCL, Kochi Refinery has always given highest preference towards care for environment and their protection. The company has already incorporated pollution control measures in their design itself and has also grown an extensive Green cover on its periphery and within for which the refinery goes by the name **BPCL Green Kochi Refinery**. Recognizing the company's commitment towards environment care and protection, it has been certified for ISO 14001, which was first in the state of Kerala.

Total green cover area at BPCL, Kochi Refinery is around 315 acres.

Kochi Refinery maintains an Eco-park and many theme based parks such as Rainbow Park, Amrutha Sarass, Varshodyan, Kalpkodyan, Herbal Park, Bamboo Park, Miyawaki Forests etc. These were developed as a part of Greenbelt initiatives and they blend with the nature and is inhabited with diverse trees, flowering plants, herbal trees and fruit bearing trees. Three number of Butterfly parks were set up towards enhancement of Bio-diversity. As part of PDP Project green belt development, we have planted more than 20,000 saplings this year to make greenery in Petrochemical complex. A Mini Miyawaki forest was developed near coke dome and PDP Project area. Further, Kochi Refinery has other dense vegetation in the form of plantation and natural growth which constitutes to the green cover. The diversified Green belt within the Refinery has drawn attention from even seasonal migratory birds.

With the reference of Environmental clearance for the project of Expansion-cum-modernization of refinery unit (CEMP-II), as committed in the EIA/EMP report, the company shall earmark Rs: 78.30 crores for environment protection measures and Rs: 51.00 crores for community development activities.

Environment Protection Measures:

BPCL – KR has been spent huge amount on Environment management associated with CEMP-II and IREP as per commitment in Environment Management Plan (EMP) were:

- Waste water treatment system
- Tall Stacks for wide dispersion of pollutants
- A closed, automated coke transferring system aims for gains in environmental, economic and safety performance
- Stack gas monitoring (online facilities)
- Land acquisition for safety of the surrounding environment
- Green belt development

Community Development Activates:

The Various Community Development Activities associated with CEMP II were carried out under the following categories.

- Education
- Water Supply for the nearby community
- Health Care
- Helping hand for Community Development activities
- Support for Development Programs in the nearby locality and Kochi City.

Some of the major activities carried out are as below:

- a. Infrastructure support like Buildings, Electricity, Water and Uninterrupted supply of Medical Oxygen needed for setting up a temporary hospital to combat Covid -19 to State Government.
- b. Free Liquid Medical Oxygen Supply for Covid Care centers of State Government.
- c. Rejuvenation of neighboring Thanneerchal Lake in Tripunithura.
- d. Support for Gas Fired Crematoriums in Grama Panchayats.
- e. House for poor (Urban & Rural): Vadavucode Puthencruz & Thiruvaniyoor Grama Panchayats and Kochi Corporation.
- f. Construction/Renovation of Primary Health Centers and Anganwadis.
- g. Construction/renovation of class rooms in Govt. Schools and Support for Special Schools.
- h. Support for Kudumbasree Units Building, vehicle for waste collection.
- i. Promotion of science education in Govt. Schools.
- j. Installation of Traffic Signal Systems and lighting at various junctions.
- k. Development/renovation/repair of rural roads and lighting projects
- I. Setting up and Up-keeping of public utilities, Public toilets & heritage monuments.